new analytical method based on Riccati equation for finding Soliton solutions of Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation

author

  • A. Nirmeh Department of Pure Mathematics, Ghonbad Kaboos university, iran
Abstract:

In this present study analytical method based on Riccati Equation as for converting the Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation into the nonlinear ODE and finding soliton solutions of this sustem discused. Obtaining solutions are new and obtained from wave transformation. The obtained results show that the presented method is effective and appropriate for solving nonlinear differential equations.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

New analytical soliton type solutions for double layers structure model of extended KdV equation

In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...

full text

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

full text

Higher-order integrable evolution equation and its soliton solutions

We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. We demonstrate its integrability, provide its Lax pair, and, applying the Darboux transfromation, present its first and second order soliton solutions. The equation and its solutions have two free parameters. Setting one of these parameters to zero...

full text

Analytical solutions for the fractional Fisher's equation

In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables  method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...

full text

An Analytical Method for Solving General Riccati Equation

Abstract—In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be ...

full text

Exact Solutions to KdV6 Equation by Using a New Approach of the Projective Riccati Equation Method

1 Departamento de Matemáticas, Universidad Nacional de Colombia, Calle 45, Carrera 30, P.O. Box: Apartado Aéreo: 52465, Bogotá, Colombia 2 Departamento de Matemáticas, Universidad Nacional de Colombia, Carrera 27 no. 64–60, P.O. Box: Apartado Aéreo 127, Manizales, Colombia 3 Departamento de Matemáticas, Universidad de Caldas, Calle 65 no. 26–10, Caldas, P.O. Box: Apartado Aéreo 275, Manizales, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 16

pages  93- 100

publication date 2019-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023